进化思想史 精彩片段:
第十一章 综合进化论-1
20世纪初,没有多少人支持达尔文的自然选择理论。野外博物学家坚持达尔文最初强调的地理因素在进化中的作用,但是对于其他的适应机制,比如拉马克主义,也颇感兴趣。古生物学家则确信进化是定向和线性的过程,其机制是拉马克主义或直生论。新一代实验生物学家则走向另一个极端,他们利用遗传学攻击拉马克主义,但是又拒绝承认适应和选择在控制(通过突变产生出来的)新性状传播中起作用。20世纪20年代,进行了旨在将生物学不同分支结合起来的第一次尝试,而且达尔文主义也从日食状况中恢复起来,成为一种新思路中的关键,这种思路在解决一些著名问题时起到了至关重要的作用。人们意识到,可以利用孟德尔主义所提供的对遗传的更成熟理解来解释含有众多变异的群体,同时还认识到,选择会影响基因的相对频率。到了1940年,许多博物学家开始意识到自己的工作可以融汇到这种新形式的选择学说中,并且放弃了像拉马克主义等不坚实的学说。结果“综合进化论”或“现代综合论”使达尔文主义再次成为生物学的主流。没人怀疑综合进化论的意义,但是在如何综合起来的看法上还有争议。曾经有人认为,关键性的突破是由于新创立的群体遗传学成了自然选择的新基础。随即,那些试图摆脱在进化机制上思想含糊状况的野外博物学家和古生物学家,利用了这种经过修订的达尔文主义。威廉·B·普罗万的《理论种群遗传学的起源》(Provine ,1971)一书,详细论述了这一方综合的情况。然而,恩斯特·迈尔(Mayr,1959c)则提出,真实的情况要复杂得多。从最初的形式看,种群遗传学是高度抽象的科学,常常不能包容野外博物学家所重视的地理因素。只有当这两个途径的研究整合起来,而且每一方都为最后的结果作出了重要的贡献时,才会形成综合进化论。普罗万(Provine,1978)一直强调群体遗传学的作用,现在已经出现了更加适中的观点(Mayr and Provine,1980;Grene,1983;有关更具批评性的评价,见Eldre dge,1985)。群体遗传学之所以重要,主要并不是由于它提供了新的概念,而是在于它摧毁了遗留下来的反达尔文主义情感,并将注意力放在新的研究上。人们通过表明,原先利用拉马克主义解释的地理效应,其实是由遗传机制支配的,从而使得微进化(种内进化)的研究发生了革命性的变化。然而,还没有证据可以证明自然选择能造成大尺度的宏进化,但是综合进化论说之所以受到古生物学界的支持,主要是因为它与现存知识相吻合。
群体遗传学
即使种群遗传学的许多早期形式忽略了一些至关重要的达尔文式因素,比如地理隔离,但是它们仍然能够重新使自然选择成为说明适应性进化的合理机制。在1920年之前的那段时期,遗传学家已经确信,突变是进化中新性状的唯一来源;他们不相信仅凭新基因适应值之间的差异就能够控制新基因在野生群体中扩散的程度。实验生物学家则过于主观,忽视了在野生状态下生物体可能面临的压力。他们轻视适应在进化中的作用,而抬高那些可以在人工环境中进行研究的过程——比如突变——的作用。威廉·贝特森等早期孟德尔论者与那些企图继承达尔文研究野生种群变异方法的生物统计学派之间的对抗,加剧了[遗传学家]与野外博物学家之间的分歧。要使达尔文主义重现辉煌,关键的一步是认识到一个群体的遗传结构远比当初设想的要复杂。然后才会想到选择导致的适应优势可能会使群体中一些基因的频率增加,另一些则降低。这项发展主要得益于三个人的工作:英国的R·A·费舍尔和J·B·S·霍尔丹,以及美国的塞瓦尔·赖特。在费舍尔和霍尔丹的工作中,数学上已经很成熟,而且由他们的工作生出了迈尔(Mayr,1959c)称作的“豆袋”遗传学方向:假定选择作用于单个基因,每个基因有其固定的适应值。进化仅仅是种群“基因库”中基因的增加和减少。赖特的研究强调,在小的、相互配育群体中,基因之间的相互作用是额外变异的一个来源。遗传学家提出的这种精制观点,与野外博物学家的地理隔离对于物种形成至关重要的看法很容易结合。贝特森和生物统计学家之间的分歧恶化为个人的思怨,于是不久就消除了结合的希望。不过,随着年轻科学家的介入,人们最终认识到两条途径的研究有可能结合起来(Provine,1971)。早在1902年,G·乌德尼·于尔就曾指出,孟德尔定律不见得一定与生物统计学派通过测量得出的变异观相冲突。孟德尔主义者之所以强调不连续变异,是因为可以通过他们的实验技术来证明这种变异,因而他们认为连续没有遗传或进化意义。然而,于尔提出,如果设想多于一对的遗传因子能够影响一种性状的话,那么,根据符合孟德尔定律的遗传因子就可以解释连续变异的性状。如果一系列遗传因子使同一性状只发生很小程度的变化,那么,在这些遗传因子的恒定重组中,简单的孟德尔比例就会消失。结果,多个因子的相互作用会导致变异的连续分布。于尔的观点具有很深的含义。如果生物统计学家能够承认孟德尔式遗传,就可以驳倒弗莱明·詹金反对将突变包括在选择中的经典的“淹没论点”。新因子不会由于融合而在每一代中仅表现一半的效应;相反,新因子会原封未动地在群体中扩散,尤其是当这种因子具有适应优势时,更是如此。通过采纳于尔的观点,生物统计学家会获得莫大的优势,而且仍旧可以保留自己研究连续变异的技术。不幸的是,两派之间的恩怨已到了难以化解的地步,以至于任一派都不能理解于尔的观点。还需要一段时间,双方才能沿着这条路线结合。1909年,瑞典生物学家H·尼尔斯-艾尔利用谷物进行了一系列繁殖实验,验证了于尔的思想。他表明,一些性状受3-4个遗传因子影响,而每个因子都遵循孟德尔定律进行独立的分离。如果有10个这样的因子,他计算将会出现接近60,000个不同的表现型。因为这些表现型之间的区别可能很小,它们将会表现出连续的变异现象。美国的爱德华·伊斯特也提出了同样的观点(East,1910)。又经过了10年,越来越多的遗传学家开始赞同根据多因子来解释连续变异,其中就包括尼尔斯-艾尔本人,这时他提出,选择有可能作用于这样大范围的遗传变异。虽然选择可以引起控制有用性状的基因基因频率增加,但是大多数生物学者依然接受约翰森的观点,即群体现存的变异范围规定了这一过程的限度。既然这样,那么突变所产生的新遗传因子将成为长期进化历程中新变异的唯一来源。这是迈尔叫做“豆袋”遗传学的核心内容:突变将新基因引入到群体中,于是选择提高了新基因的频率,或者,如果新基因有害的则会清除它们。事实上,这是一个极其狭隘的观点,它忽略了基因间相互作用所产生的复杂效应,但它却是早期遗传选择理论的框架,在实验室中的实验显示,突变一直在产生小的变化,这些变化传入到群体中,没有受到干扰。选择能够影响新基因在群体中扩散的速度,进化可以看作是这种小变化长期持续积累的结果。在托马斯·亨特·摩尔根的思想中可以看到这种思路早期的影子(Allen,1968,1978;Bo wler,1978。1983)。最初的时候,摩尔根赞同德弗里斯的观点,将突变视为产生新物种的直接基础;但是他不久就开始意识到必须要在现存配育群体中保存新性状。起先,他仍然不承认选择有什么作用,并坚持认为任何新性状不管是否具有适应优势,都能在群体中扩散。1910年,摩尔根通过果蝇的实验转而相信孟德尔主义,并开始发现自然发生的变异规模可以很小。他逐渐开始承认,如果不借助于选择,由突变形成的新性状就不能扩散。到了1916年,他提出了形式上还不太成熟的遗传选择理论:有害或中性突变不能扩散,而有益突变由于比原来的基因繁衍速度快,所以可以逐渐在整个群体中占据主导位置。摩尔根从来不愿承认群体中会存在任何数量的有害基因,或许因为他发现彻底淘汰不适应个体的观点在道德上令人厌恶。他的理论是”一种极端形式的“豆袋”遗传学,这种观点认为,有害的新性状一经由突变产生出来后,就会立刻被清除出去。这种观点以更成熟的形式,通过摩尔根的学生赫尔曼·J·穆勒所维护的“经典”群体遗传学假说(Muller,1949),一直到20世纪中期仍有生命力。此时的这种观点已经降低了群体中遗传变异的程度:据认为,大多数个体中只有少数基因与该物种的正常或“野生型”性状的基因不同。通过突变,不时产生出这种异常基因,但是又因其具有有害效应而被选择不断淘汰。只有极少量的有利突变能够扩散,成为物种的新野生型。这种观点得到了某些实验遗传学家的支持,他们研究更明显、当然也是更有害的突变,而且相信突变几乎总是在破坏一个基因的功能。大多数野外博物学家怀疑这一经典假说,他们相信,自然选择通过实际上保持着所有群体的高水平遗传多样性,起着相当主动的作用。只是随着分子遗传学的发展,才有可能证明传统方法极大地低估了遗传变异性。然而,正勒如旺丁(Lewontin,1974)指出的那样,这种观点并非自然而然地证实了选择在进化中起着更主动的作用。群体遗传学的“中性学说”学派出现了,他们宣称,人们观察到的大多数遗传变异性在适应性上都是中性的,因此它们的积累不受自然选择的影响(Kimura and Ohta,1971;Kimura,1983)。
现代综合论的另一个基础是群体结构“平衡”假说。摩尔根和穆勒不赞同后来成为新群体遗传学中的一个最重要的见解:影响每个性状的大量基因已经存在于任何自然种群中,供选择作用。即使突变所产生的遗传性状没有任何优势,它们也会以低频率的形式在种群内流动,物种因而储备了变异性,当条件改变时,这些比变异就会被选择受到选择的作用。甚至在一个稳定的环境中,“平衡选择”也可以有效地帮助维持遗传变异的范围,以便将来用于适应性进化。
存在大量遗传性变异的观点曾经是生物统计学派达尔文主义的中心原则。这时有必要从孟德尔主义的角度,解释为是多因子造成了连续的变异,并表明选择有能力改变有益基因的频率。后一种观点已于1915年得到证实,当时R·C·庞内特发表了一篇有关蝴蝶拟态的研究,其中附有数学家H·T·J·诺顿的一个表格显示出选择如何造成有益基因在群体内的扩散。庞内特本人相信不连续进化,但诺顿的计算表明,甚至轻微的优势都可以在不久之后提高基因的频率。这时,为建立在自然选择作用于遗传变异群体基础上的一种新的逐渐进化理论的道路已经开通。
罗纳德·艾尔默·费舍尔在剑桥大学学习的是数学,他对皮尔孙的生物统计技术发生了兴趣(Norton,1975b;Box,1978;Bennett,1983)。他不久就因对待孟德尔主义看法问题上与皮尔孙发生了分歧,不过,麦肯齐(Mackenzie,1982)到认为他一直赞同生物统计学派的纲领。费舍尔认识到,利用孟德尔定律,可以解决许多皮尔孙因依赖于融合遗传而产生出的许多问题。单位性状可以保持下去,而不融合,这样也就可以保持群体的变异性。他有关这个问题的第一篇论文曾遭到伦敦皇家学会的拒绝,主要是他们对因生物统计学派与孟德尔主义之间的争端所引起的情绪化太敏感了(Norton andPearson,1976),费舍尔的文章后来发表在爱丁堡皇家学会的学报上(Fisher,1918)。又过了10年,费舍尔利用他的技术研究了选择对遗传性变异群体的影响,并最终出版了他的名著《自然选择的遗传理论》(Fisher ,1930)。
费舍尔根据一组假设,建立起一个具有说服力的数学模型。按照这个模型,选择均匀地作用于大群体,重组使变异性达到最大化。如果一个携带有用性状的特定基因繁衍速度很快,那么有可能计算出它的频率增长速度。在费舍尔的公式中,选择是起决定性作用的过程,作用得很慢,但是确实增加了单个基因的频率。因为模型根据的是单个基因,所以仍然建立在豆袋方法的基础上,尽管这个模型显示选择只能降低不利基因的频率,如果不利基因由于隐性而受到保护的话,就不会完全消除。费舍尔证明,当杂合子比纯合子更适应时,选择的作用可以保持两个等位基因的平衡。大多数已发现的突变都是有害的,但是因为这些突变一般以固定的速率产生,这样就抵消了选择降低其频率的作用。在一个小群体中,一个罕见基因可能偶然会灭绝。由于这个理由,费舍尔相信大的群体有利于进化,因为在大的群体中可以保存变异性。一个基因一旦在某种情况下对物种有利,其频率就会立刻提高。费舍尔认为,通过突变提供到基因库中的新因子一般说来比较少,于是,这些因子就成为物种有规律变异性的一部分。因此,即使选择要利用不同的突变,但是进化仍然是相对连续的过程,不会出现突然的跳跃。
J·B·S·霍尔丹于1924年发表了他的第一篇种群遗传学论文,于1932年发表了该领域的一部重要的论述(Clark,1969)。霍尔丹象费舍尔一样,提出了某些假设以简化数学运算:可以随即配育、无穷大的群体,完全表现出孟德尔式显性和分离分离。他也强调对单个基因的选择上,但是霍尔丹通过实际例子表明,这一过程比费舍尔设想的要快得多。最有名的例子是桦尺蛾(Amphidasys betularia,现名Biston betularia)的工业黑化。1948年人们第一次提到这种蛾的深色或黑化类型,后来这种蛾开始在英国的一些工业区中分布,在这些地区,它由于颜色和煤烟覆盖的背景相近,于是可以躲避捕食者。到了1900年,黑化类型几乎完全取代了该地区正常的灰色类型。霍尔丹表明,黑化类型扩散得很快,子代中一定有50%的为黑化类型,这比费舍尔所想象的选择优势要大得多。
因为费舍尔和霍尔丹都假定当选择作用于一个具有广泛变异性的大群体时,它才是最有效的,因此他们的理论仅仅涉及到一个连续、没有分支线系的进化问题。他们忽视了野外博物学家感兴趣的物种形成问题,即一个群体分化成不同的分支,他们也不愿承认地理隔离的群体也许有着重要的进化意义。另外,他们使用的是豆袋方法,将每个基因视为具有特定适应值的独立单位。这种方法没有考虑到基因间可能存在的相互作用,根据这种新的相互作用观,在无需通过突变产生新基因的情况下,就能扩大群体的变异性,而且还可以解决约翰森所宣称的遗传变异的数量受严格限制的问题。美国的威廉·E·卡斯特(Castle,1911)迈出了打破这种限制的第一步,他通过冠鼠的繁殖实验表明,在某些环境下,有可能发生额外变的异。作用于小群体中的连续选择有助于异常遗传组合的形成,奇迹般产生出超出大的相互之间自由配育群体中正常变异范围的变异。卡斯特的实验还表明,一定的“修饰基因”能够影响产生特定性状的基因效应。这时,人们不得不将繁殖群体看成一个复杂的系统,在受到选择和或近交影响下,能够产生大量的变异。
卡斯特的学生塞瓦尔·赖特根据卡斯特的这种观点,发展出一种新形式的群体遗传学(Provi ne,1986)。通过豚鼠体色的实验,赖特确信基因之间的相互作用系统很重要,他通过参与的冠鼠实验也发现,小群体中的近交会激发变异。到了1920年,他发展出一个很有力的数学技术,来分析近交效应,从而使他发现,通过这种方式,基因相互作用的系统可以通过这种方式得到固定,然后再受选择的作用。他开始将这种思想用于自然群体中,他认为在自然界的小群体中,更容易发生近交,这种近交的强度足以通过人们所知的“遗传漂变”这种随机效应,自然而然地产生出新的相互作用系统。对于进化来说,最有利的情况是,一个大的群体并非平均地分成相互隔离的区域性品系。然后,自然选择开始作用于新的相互作用系统,并使之产生迅速的进化。近交的随机效应将导致小群体脱离物种的“适应峰”,这样,这个小群体就会通过一个相对来说非适应的中间带,直至建立一个新的适应峰。赖特着重批评了费舍尔的观点(Wright,1930),然后更详细地论述了他自己的进化理论(Wright,1931)。这时人们已经抛弃了豆袋方法,转而赞成另一种更加成熟的观点,按照这种观点,在新的相互作用系统的建立过程中,基因库的作用是突变与选择的中间媒介。
现代的综合
野外博物学家几乎都不能理解种群遗传学的创建者们所采用的复杂数学。他们只能将数学结论翻译成常识性的语言,然后再看其中的见解能否用在他们自己的研究中。在研究种内和种间地理变异的博物学家中,自发地产生出一种群体思维方式。他们已经意识到变异的复杂模式并不符合类型学的物种观,按照类型学的物种观,区域条件只是改变了基本内在构成的表面形式。应该将每个地方品种或亚种视为不同的各具特征的配育群体,即使在地理隔离不复存在的情况下,它的繁殖也不与相邻群体相混。这些博物学家相信,地理隔离对曾是同源群体的首次分离是至关重要的,而且他们确信每个亚种所处的环境造就了各个亚种的独特性。只有当这种群体思想与数学群体遗传学相融合后,才会产生出现代综合论的大致框架(Mayr and Provine,1980)。在博物学家的地理见解中,不太容易采纳费舍尔和霍尔丹所使用的方法,但是,费舍尔和霍尔丹的工作已经足以使这时的大多数生物学家确信选择是适应进化的重要机制。野外博物学家随着逐渐知道了数学家的一些结论后,他们也开始放弃了早期依赖的一些未经证实的理论,如拉马克主义(Rensch,1983)。经过证实,赖特的方式最容易应用到野外工作中,对此不必惊奇,这主要因为他所重视的小的近交群体的作用很适合用于地理研究。杜布赞斯基在他那本极具影响力的《遗传学与物种起源》(Dobzansky,1937)一书中采纳了赖特的结论,于是积极推动了在20世纪40年代开始的现代的综合。
在为这场综合铺垫道路的过程中,在俄国,由谢尔盖·S·契特维里柯夫指导的工作起了非常重要的作用(Adams,1968,1970;又见Mayr and Provine,1980)。大约1900年左右,俄罗斯的博物学家并没有受到西方流行的反达尔文主义思潮的影响,因此契特维里柯夫处于一个极有利的位置,来考虑与遗传学综合的可能。俄罗斯学派发源于相信自然种群中存在着许多以隐性基因形式的看不见变异,契特维里柯夫能够通过果蝇的野生群体与从美国带来的纯系果蝇进行杂交来验证这个观点(Chetverikov,1926,英译文,1961)。他的学生D·D·罗马索夫和N·P·杜比宁提出研究不同大小群体中统计学效果的方法,证明了契特维里柯夫相信的在小群体中更容易产生出本质上变异的观点。他们引入了基因库这一概念,表示潜在的遗传组合;并且已经认识到这种组合符合概率定律(Adams,1979)。李森科事件的结果之一,就是导致契特维里柯夫学派的消失(见第九章);然而,契特维里柯夫的工作影响了N·W·第姆费耶夫-雷索夫斯基,他于1925年去了德国,而且主要是由他提出了更加成熟的有关突变在建立遗传变异方面作用的思想。杜布赞斯基虽然在1927年移居美国之前不属于契特维里柯夫学派,但是他也受到过契特维里柯夫的影响。
在英国,E·B·福特在《孟德尔主义与进化》(Ford,1931)一书中阐释了费舍尔研究的成果。福特对生态学问题感兴趣,他随后的工作进一步表明,选择的作用比费舍尔的预想更迅速。这就证明,事实上,霍尔丹所分析的桦尺蛾工业黑化并不属于例外。加文·德比尔的《胚胎学与进化》(De Beer,1930)动摇了支持重演论的证据,拉马克主义者曾经非常依赖于重演论。因为遗传突变并的影响并不添加到现存生长图景中,所以没有什么理由认为生物个体的生长必须经过它们进化祖先的成体阶段。在英国,最为有影响力的是J·赫胥黎,他是T·H·赫胥黎的孙子,从1920年开始,他在牛津大学执教(Huxley,1970)。很自然,赫胥黎从上几代生物学家那里汲取了达尔文主义,并开始为复兴这个理论而努力。他与H·G.威尔斯合写了《生命科学》(Wells and Huxley,1930)一书,全面而通俗地阐述了达尔文的进化观点。他本人在动物行为研究上也是严格遵循着博物学的传统,不过他也对胚胎的生长感兴趣,并且关注着遗传学的最新进展。1940年,他编辑了《新系统学》一书,这部书汇总了生物学各个方面的贡献,而且他的一部综合性论著《进化:现代的综合》,也于1942年出版。